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ROBUST OPTIMUM INVARIANT TESTS OF COVARIANCE
STRUCTURES USEFUL IN LINEAR MODELS

1. Introduction.

In this paper we) investigateirobust optimum invariant

tests of some covariance structures that naturally arise in

the context of robustness study in linear models., The

concept of robustness in connection with linear models is

entirely different from the notion prevalent in multivariate

analysis (vide Kariya and Sinha (1985)) and refers to the

structures of X and V in the model (Y, Xa, a 2V) in contrast

to the distribution of Y. Here X is known as the design

matrix and a 2V the variance-covariance matrix of Y.

To describe this concept, let (Y, XS, *I) be the

assumed (probably incorrect) model while (Y, XB, 02V) be the

correct model, resulting in the specification error in the

dispersion matrix. Then it is well known that the BLUEs of

all estimable linear parametric function A remain the same

under both the models if and only if the following condition

holds on the structure of V:

x'vz > (1.1)

where Z denotes a matrix of maximal rank satisfying the

condition Z X = 0. This result, in various equivalent forms,

appears in Rao (1967), Zyskind (1967), Rao and Mitra (1971),

*, .v.~. *.P' *~ -- - ~ . -
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Mathew and Bhimsankaram (1983), and also in Sinha and

Drygas (1983). Our object is to test the null hypothesis

that V possesses the structure s b- asa- - based on

samples on Y under the model (Y, XO, 62V) for a fixed design

matrix X. This hypothesis is of considerable interest as

its acceptance greatly simplifies determination of BLUEs of

estimable linear parametric functions..,

Below we work with a canonical form of this problem

which is now developed. Let Y: n x 1, X: n x k with rank (X)

= r < k, so that X = X°C for some X : n x r of rank r

and for some C: r x k of rank r. Consequently the matrix

Z: n x (n-r) which satisfies Z'X = 0 also satisfies Z'X° = 0.

It is then clear that the condition (1.1) is equivalent to

X°'VZ =0X Z=(1.2)

Defining Y(l) = Z'Y and Y(2 ) = X'Y and making the 1:1

transformation Y . (Y(1), Y(2)) it then follows that the

condition (1.2) is equivalent to testing the hvnothpsis

that Y(1 ) and Y( 2 ) are uncorrelated. If Y is assumed to be

normally distributed, this is the familiar problem of test

of independence of two random vectors Y(i) and Y( 2 ) with the

added restriction that EY(l) = 0 since Z'X = 0. This

problem is analyzed via invariance in the next section where

normality of the underlying data matrix is replaced by an

elliptically symmetric distribution.

.V " ° ' '. . -' ' ' ,' - ''...-." -".-' ".- ",-' -. - , ' ,'- , ' ' - ' ' '
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There is another form of robustness in linear models

in connection with tests of estimable linear parametric

functions. To describe this briefly, consider the problem

of testing H0 : AB = 0 under the assumed model, (Y, XB, a21),
2

a unknown, and Y is distributed normally. Here AB is

estimable and hence testable. It is well-known that the

F-test based on the ratio of sums of squares due to the

hypothesis and due to the error is both L1T and UMPI under

a suitable group of transformations (vide Iehmann (1959)).

The answers to the question "Is the F-test (given above)

under the model (Y, Xa, a 21) still LPT under the correct

model (Y, XB, a2V)?" have been put forward by Khatri (1980),

Ghosh and Sinha (1980) and Pathew and Bhimasankaram (1983).

It turns out that the answer is in the affirmative under

the following condition on V;

(I - PX ) V(I - PX ) = a(I - PX ) (1.3)
0 o o

for some a > 0 where PA = A(A'A)-A', (A'A)- is a generalized

inverse of A'A, and X0 :Y(I - A-A).

The second object in this paper is indeed to test the hy-

pothesis that V in the model (Y, XB, a 2V) possesses a structure

satisfying (1.3), for a fixed linear parametric function A',

based on samples of Y for a fixed design matrix X. Inci-

dentally, if we demand (1.3) to hold for all estimable A',

it turns out that V = I is the only matrix satisfying this

condition.

.4 Avil j.d'

% % *~***
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As before, here again we work with a canonical form.

Writing I - P = DD' for some D: n x y of rank y =
0

rank (I - P ) and noting that D'D is p.d., it follows easily
0

that (1.3) is eauivalent to

D'VD = al, for some a > 0 (1.4)

Defining now W = D'Y, it follows that (1.4) is eauivalent

to testing the sphericity of W with the added restriction

that E(W(1 )) = 0 where W = (W'I)W72 )). This follows from

the fact that the range or the column space of D contains a

subspace which is orthogonal to X. This problem is taken up

in section 3 via invariance with normality of Y replaced by

elliptical symmetry of Y.

2. Test of Independence

The canonical form of this problem is as follows. Based

on a data matrix Y: n x p ( X : Z ] obeying the model
nxpl nxP 29Pl

11/2 p1
S U(1 " : 01 + UJ I / , U £ R , [ p.d. (2.1)

where U has an elliptically symmetric distribution with

density

%.%'V , _' . .' . ... .. .-.. . . ' - .. -.-..- -j .°. - ,. -.. ,. . ' '.. . .
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f(u) = q(tr u'u) for some q: (0, o) [0, -) (2.2)

such that f q(tr u-u)du = 1,
R nxp

we want to test the hypothesis H0 : 0 vs. Hl:

12 0 . Here I is expressed as

Ii 112]  Pl The p.d.f of Y can be written

121 122 P2
P1 P2

as

f(YI iq) = 1 -n/2 q(tr-l_(X - I ',Z)) (2.3)

When u =0 or the mean of Z is not known and Y is normal,

this is the usual problem of testing independence of two vec-

tors for which optimum solutions do exist in the literature.

For example, Schwartz (1967) established that the test based

on tr SxzS z
1 SzS is IIBI in general. For nonnormal Y, itsxzz zx xx

null and optimality robustness under certain conditions on

q are established in Kariya and Sinha (1985). Of course,

when p1 = P2 = 1, this test boils down to the ordinary pro-

dut moment correlation test and becomes UAIPI. Here S

denotes the sample Wishart matrix based on Y and S is

V % •
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decomposed as S = SXX SX Pi

L I SZP2
P1 P2

We shall see how the solution changes in our problem because

of the information that the mean of Z is O. We mention

that under the assumption of normality of Y, this problem

under a slightly wider framework appears in Eaton and

Kariya (1983).

Before we discuss this problem from the point of view

of invariance, let us quickly look into the LRT. Define

x: p x l, z: p x 1 and S in the usual fashion and

decompose S as S = FSxx Sxz 1
Szx Szz

as mentioned before. The likehood function (2.3) can be

written as

x-P
f~p, 11y) = 11In/ 2 q(n r 1--C1

- )((x-P)Z.' ) + trj - IS ) (2.4)
z

Assuming that q(.) is a nonincreasing function of its

argument, it follows that the MLE of satisfies -

- UI [12' 0. This yields
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sup f(pl,1IY) = I1I-n/2q(n tr 121 + tr J- 1 S) (2.5)
2 -

Using (Rao(1973 ))

11 112 - 1 112 11 2112 122 (2.6)
2+1221121 1 1 .2112122

where

[11.2 = I 1- [12 122 121

and

jT~J = IT iT ,

22 11.2

we get

tr J-1S + n tr 1-1 zz = tr 1 -1(S + n 2z) (2.7)22 22 11l + n~z 27

tr [ll 2 (Sxx- 112122lSzx - 21 12121 ) "

21

2. .

• -I . , . . .. . . . . .. . . , . . . • , , , .
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While maximizing the likelihood function with respect to 1,

we consider the reparametrization 122, Zll2 and -1121 =

(say). The expression in (2.5) in terms of these new

parameters can be written as

sup f~U, 1Iy) 1 F-n/ 2 q i-n/2 (2.8)
22 11.2

q(tr (S zz+nzz' )+trlll.2(sxx'z+(l-SxzS)zzSzzl(-SxzSz )

Clearly this attains its maximum with respect to when

= SxzS 1 resulting inz z

sup f(u, 122' 111.2' Cly) = 1122 -  Il 21 -n/2 .( 2.9)

q(tr 1 (S~ + nzz') + tr S22t (zz 11 . .~

Finally, using a result of Anderson and Fang(1 9 8 2 ) we know

that if q is nonincreasing and differentiable the YLEs of 722

and 111.2 are given by

122 x (q) (S +- nzz')22 zz ...

4" " - "
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111.2 =' 'max (q) Sx~

where Xmax(q) is the solution of the equation

q2)+ DLX q(2) = 0.

-x
For example, if q(x) =e 2 X~ (q) 1

max n

Therefore, we have,

q~pXq) pX q))(2.10)i(lmax (q 2Xmax ()

X ) (q) IS~ + nzzi -n/ I-/ q(pX~~ (q))max xzma

Analogously, under the null hypothesis H0 : 112 -0, we get,

I -n -n

su lu~y)=X (q)IS +nzz'l is~ I q(pV-1 (q)) (2.11)spmax zz xxmax

A 0
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yielding the LRT statistic as {ISxx.zl/ISxx} n/ 2 . In the above

we have assumed that q satisfies q(pX 1 (q)) < -, o < X (q) <
max max

Remark 2.1: It may be noted that the LRT derived above is

just the one without the information that Z has mean zero

and so it ignores this information. When Y is normally

distributed, this is derived in Lee and Geisser (1972). As

noted in Eaton and Kariya (1983), this is rather surprising.

Our derivation of the LBI test of H0 : 112 = 0 versus

Hl: 112 / 0 under the model (2.3) parallels a similar

derivation in Kariya and Sinha (1985) where Z, like X, also

is assumed to have an unknown mean matrix of the form 16"

for some 6 £ Rp 2 . We restrict our attention to the

likelihood function given in (2.4) and without any loss of

generality due to the invariance of the problem assume that

a) x - = 0 in (2.4) and b) I is of the form

= [Ipl r ] where

r = (a, 0): Pl x P2 with A = diag(61 , 62,..., 
6pl). Here

without any loss of generality Pl 1 P2 is assumed. The

result a) follows upon noting that the testing problem

remains invariant under the transformation x - x + for

& e Rp1 , that the left invariant measure on Rp l is Lebesgue,

and that the result of integrating out in (2.4) after

the substitution x x x + ( (this is while invoking Wijsman's

.4
4 '"'': , "" iq ' %-' - > , ' ->'' .'''l-' '''' -'''''\ .>"

'
-'
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Representation Theorem) is rvothing but to put - = 0 in

(2.4), multiply the right hand side of (2.4) by

111.211/2, apart from a constant, and replace q by some

q: (0, -) - [0, a) satisfying a similar integrability

condition as q. The resultant expression for (2.4) is

then given by (writing q for q)

f(Y l=k- 1-n/2 . - n-1)/2qln trl2 +trl-is) (2.12)

with r , where k is a constant.

r o P 2

In this setup the problem is to test H0 : A = 0 versus

Hl: A / 0. It is easy to see that the testing prolem in
this somewhat reduced form remains invariant under the group

G of transformations

G = A = , Ai c Gipi), with the group action
A 2

S * ASA' , . Az (2.13)
- 2..

% %
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A left invariant measure on G is v(dg) = v 1 (dA1 )v2(dA 2 )

with v.(dA.) = IA.A~I 1 i = 1, 2, and the inverse of
1 111n n+l

2 2
the jacobian of transformation is given by IA A'I - A A'I

Using Wijsman's Representation Theorem (1967), the ratio

r A~ (y- dp a is obtained as

P0

rA(y) =

-n n-pl-± n-p 2

f q(ntr-zA'A z + trj-'ASA-)IA AAI 2 A IAAJ dA dA2
Gi(pl)xG9iP 2)-22V

n-pl-1 n-p 2

f q(ntrz'A'A~ T r ASA')IA A"I 2 JA A"I 2 Ad
GZ(pl)xG1 (P2) 2 2- -1 2 2 2 d 1dA2

(2.14) 1

Remark 2.2: It is clear that an optimum test of H0 versus

Hl is obtained by examining the behavior of the ratio rA(y)

as a function of A. In the special case when z is absent in

this ratio, it is proved in Kariya and Sinha (1985) that there

exists a UMPI test if p1 = P2 =1 and an LBI test in general.

However, with the presense of z in this ratio, there does

not exist a UMPI test even when p1 =P 2 =1. This is
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observed in Eaton and Kariya (1983) when Y is distributed

normally.

Now to derive an LBI test, we proceed as follows:

Straightforward computations yield

r-= 1  1 -1+(Ip-r'r) i 2  - (2.15)
IJP1 r1  Ip riP2 rl r -riP2 _r)

ir I -(I -r'r)-1r" (I -r)-

2_ L P2 P2

I +A(I A)-A" -(A(I -A'A)-I 0)
apl pl p1

-l 0- 
l0 2 P

and with r = (A:O), and IIAII 2 = p 2 small,"' i=1

(I pl- AA) - I  (Ip A-A)- 1 2pl, = - A') = + AA" + o(llAiII) (2.16)

(ipl- AA)-A = A + o(H1Ahl2) = A(I pl-

pl + A(Ipl- A-A)- A, = I + AA' + o(IIAII)2

Pl

.. , " - "- , v "-"-- "-" "-" 5" ," .'"""""' - """ '""""' """""""" , " "" "" " " " ' ' ' :" "
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Also we have,

tr ASA' =tr A S1 1 A' + tr A S 2 A' (2.17)

so that

trn z'A'A z + tr ASA' = tin A S1 1 A'+tr A (S22 +nzz')A' (2.18)

Finally, using ( 2. 15) and (2.16), we get

*n tr z'AA 2  z + tin1- ASA- (2.19)

= tr A S1 1A+tr A ( 2 +nii')A'] + tr(I 1 -I1 )ASA-

111 2S2

while

tr(I -I )ASA' trI--1 rS=' A A'] (2.20)

2S21 1 A2S22 2



V1-vwzvU~~r -% ww w --k -.j"1TZ1" FAknMrV
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t -r + *(11A&112)) PA1S1 1 A' A S 2 A-

r trr +A S ' ASA

tr~ &A' SA' 2tr rA2 S21 A' + tr r'r A2 S 2 A' +

0 (IHAIl 2 ) (tr ASA')

* where o*(11A112 ) is a matrix of order p x p all of whose

elements are o(IHAJ12). We now make the transformation

AS 1 / 2 .Al if A (S + n zz'l/2 _-. A (.21 11 1 22 2 (.2

* This reduces rA(y) to

rA(y)

-n

III 2 f q(tr A A'+trA A')+trAAMA Aj-tr 1A
4Gi(p 1 )xGZ(p 2 )1 1 1 2 1

n-p 1 -l nP

2 2 2 2

*n-p 1 -l n -P 2

fq(tr A 1 +trA Ai)IA1A- 1 1A2A2 1 2 dAldA2
GIpl)xGtIp 2)11 2
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where

V= S2 2 + n )-/2 $S + n i)-i/2

w s22 n 2 1/2
- (S 22 +nZZ S2 S1

and the term o(I1A11 2 ) is uniformly so in Y. This is because

both V and W satisfy IIW'WII < 1, 1IVII < 1.

We now expand the numerator of r&(y) around A = 0 using

standard Taylor expansion. Towards this end, we assume that

q is thrice continuously differentiable and

n-l-p1  n-p2

11 222 2 2 t 1
/Il)t AA+tr 123{~x A2A1I Itr PA2QA[I =

(2.23)

Itr PP'AIA'+tr RR'A2 A'I3 dAdA2 < ,

for L = 0,1, P: Pl x P2' Q : P2 x P1 ' R: P2 x Pl

where qi(x) = dx i = 1, 2, 3.

Then,

q[(tr A Ai + tr A2 A') + tr W'A IAj - 2tr r A2 WA' + (2.24)

2 2 2 1
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tr ror A2VA' + o(lAII 2)]

q(tr AA' + tr A2A;) + S(A:A)q( )(tr A A' + tr AzA )

16(A:A)}2q(2) (tr AA+tr AA' ) + {S(A:A)}3
2 '1 1 22

q (3)(tr AIA' + tr A2A') + (1-a) 6(A:A)] 0 < a < 1

where

(A:,&) = tr A'A A'-2tr r A2WA'+tr rr A VA' + o( IH 2
1 1 2 1 2 2

To evaluate the integrals of these terms over G£(pl) x

G£(P 2 ), we note the fact that the integrals of odd functions

of A1 and A2 are zero because the integrals are finite by

our assumption (2.23). Moreover,

f (tr rr A2VA')q(
1 )(tr AIA' + tr A2A) '  (2.25)

G(pl)xG(P 2 )

n-l-p 1  n-P2

IA AI 2 A 2A 1 2 dAldA 2 =Cl(q)(trrFr)(trV)=cl(q)(trA'A)(trV)

a..



where

n--p fl-p2 1 2
Pl2 IA Al~I

IA A-1 2 2AA0 2 dA dA2

and

(tr r A 1A)2q(2(rAA + tr A A-) .C2.27)

Gl(p1 )xGl(P2 )

*n-i-p 1  n-p 2

2 22

where
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C M2 q=-- f (tr (I :O)A [IPJIA) 2 q(2) (trAlA'ItrA A-)
2 p1  GZ(pl)xGI.(p2) P 111

n-l-P 1  n-P2  (2.28)

I AA l 2 "I AA 2 dA dA2

(2.25) and (2.27) can be proved along the same lines as

* in Kariya (1978), Eaton and Kariya (1983), and Kariya and

Sinha (1985). The expressions for c1 and c2 and Y is

normally distributed appear in Eaton and Kariya
* n * -n(n-l)

are given by c I = n , c2 =
P2 2 PlP2

Additionally, we get

f (tr A A'+trr-rA2VA-)2q(2) (trAIA+trA2A') (2.29)
G£(pl)xGt(P 2 ) 1 1

n-l-pl n-P2

IA AAI 2 IA2 A;i dA dA2 - o(IIA 2

1~~ (2)1

f (tr A A A+trrl'A2 VA')(trFA2 WA) 2q (2)(trA A+trA2A')
Gi(pl)xGi(P 2)

(2.30)

n-2n-i-p1  n22

IA A I 2 JA2A'I dA dA2 = o(2 II )

1* 1 ,21
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and so on. These results follow primarily because V and W

are bounded in norm as mentined before and the integrals

involved are finie by our assumption ( 2.23).

We are now ready to collect all the different terms

arising out of the integrals of the expression in (2.24).

A straightforward computation shows that the ratio ra(y) in

2.22) is given by

rA(y)=l I-n/2[l+(trAA')ftrV)cI+C2 (trWW')}+o(IA. 12)] (2.31)

= l+(tr AA')[cl(tr V) + c2 (tr WW-) + } ( II 12)

since

II1-n/2 = II AAI-n/2 = 1 + 2 tr AA' + o(IIAII 2

A simple application of the Neyman-Pearson Lemma then

yields the following result.

Theorem 2.1: For testing H0 : 11 2 = 0 vs HI 1 12 0 under

the model (2.1)-(2.2), the test which rejects H0 for

large values of cl(q)tr V+ c2(q) tr WW' is LBI for a given q

satisfying Assumption (2.23).
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Remark 2.3: When V is absent, the LBI test statistic coincides
with the popular expression tr 22S21SS12 given by Kariya and

Sinha (1985), and represents a robust LBI test for all q satis-

fying Assumption (2.23). When V is present but Y is normal,

this expression is the same as in Easton and Kariya (1983) (their

equation (4.6)).

Remark 2.4: The LBI test statistic derived for a specific q

remains robust for q e Q, a class of densities satisfying
c,(q)

Assumption (2.23), whenever c is a constant, independent of
c2(q)

q. It is easy to verify that for normal variance mixtures
-tr u'u/w

f(u) = (2r) np/2wnp/2 dG(w), cl(G) and c2 (G) are given by

cI(G) = cl, c2 (G) = c2 , independent of G. Hence the LBI test

is optimality robust at least for arbitrary normal variance mix-

ture family. The null robustness of the LBI test in this case

follows easily from Kariya (1981).

3. Testing Sphericity

The canonical form of this problem is identical with that in

2
Section 2. However, here we are testing H0  1 = versus

•21 2
H1  . 2 ,, 2 > 0 unknown. When the mean of X is also zero or

the mean of Z is unknown, this is the well known problem of test-

ing sphericity for which optimum tests are derived in Sugiura

(1972) under the assumption of normality of Y, and in Kariva and

Sinha (1985) under a more general distribution of Y. Here, as in

* .. ~..,..., -".*'** .~.* ~~ a

a.*% 'a . -. * - s.-, - ~
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Section 2, only one of the means is unknown and we shall see the

solution changes drastically.

Before we employ the principle of invariance in an

attempt to derive an optimum invariant test, here also

we first derive the LRT. The likelihood function appears in

(2.4) and its unconstrained supremum is given in (2.10) of

Section 2. Under the null hypothesis HO: [ - 1 2 > 0

unknown, (2.5) reduces to

sup f(4, a ly) = (a )- q(tr(n zz- + s)/a 2 ) (3.1)

U

Finally, using a version of the same result by Anderson and

Fang( 1 98 2 ) mentioned in Section 2, we know that if q is

nonincreasing and differentiable the MLE of a2 is given by

^2

S= O(q) tr(n zz- + s)

where O(q) is the solution of the equation

S".

:a"'ql(l) +  2P q(!) :0

":2 1

i.

.R, .
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Hence.

sup f(P,a 2IY)={ e (q)} -np/ 2{tr(n zz+s)}-np/2q(6 - ) (3.2)

-H0

Comparing (2.10) and (3.2), the LRT criterion X is

obtained as

ISxx.zI ISzz + n z'" n
a2 - (3.3){tr(S + S + n zz)} (P

xx zz -.

Here also we have assumed that - n X (q)) < and
-npm

Oq)2 q( 1q) <
(q) 2

Thus the LRT criterion remains robust as long as q is

nonincreasing and differentiable.

To derive an optimum invariant test, we note that the

testing problem H0 : I = o2, versus Hl: I # 02I, o 2 > 0,

unknown under the model (2.1)-(2.2) remains invariant

under the group G of transformations G = X RPl x 0 (pl) x

O(P2) acting on Y as

g(Y) = g(X: Z) = c[(XH 1 + 1 ) ZH 2] (3.4)

• " " "" ' ' " 'Z " ' '1 " -- "" " "' ' " . ." ."" "' "- ° -" ' ' ' " " . -
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for g = (c, 6, Hl , H2 )eG. A left invariant measure v(dg) on
cis given by ddv(dHl)v(dH2) where d6 is Lebesgue onR l

and v(dHi) is the invariant probability measure on 0(pi),

i = 1, 2. A straightforward calculation shows that the ratio

T T
dPH /dPH of nonnull to null distribution of a maximal invar-

H1 H0
iant T is given by

T
dP Hn-i -11

T Il2 11221 - 1/ 2 f (I+F) 2 v(dH1 )v(dH2 ) (3.5)
dPH 0  0(pl)X O(P2 )

where

tr( - - I )HSH" + tr(2 2FPl -22 P2)H2V2 36
tr S + tr V (3.6)

and

V n zz , H H 0 : p x p (3.7)

0 H2

We note that when V is absent in (3.5), the ratio boils

down to the familiar expression (Kariya and Sinha (1985))
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dPl -n

T 2 G (1 + F*)- p /2  v(dH) (3.8)
dPH 0(p)

where.

tr I - I )HSH"

F* t P and H c 0(p)tr S

However, in our problem, because of presence of z

and the structure of the joint density in (2.4), H has

to be taken as a block orthogonal matrix given in (3.7)

above.

Remark 3.1: It is interesting to observe that the ratio

dP T

T1 in (3.5) is independent of q. This implies that any

dPTH

null robust invariant test is automatically nonnull robust.

Also, the optimality robustness of an invariant test follows

trivially.

The crux of the problem now is to expand the R.H.S. of

(3.5) in I locally around the null hypothesis H0 . Because

of the invariance of the problem, we assume without loss of

generality that [ is of the form

I

i1

-J

,Ir~*. * % . a
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S= 1 12] , A1 = diag(X) , A2 = diag(6 i ) (3.9)

and that the null hypothesis is specified by H0 : [ = Ip.

Local alternatives are fixed by choosing e > 0 small and a

suitable matrix A and setting =Ip + CA. Writing
. "A = [A11  Al12

rA6211 A22

with All and A22 as diagonal matries, we get A1 = IPl + gall,

'"A2 I IP2 + EA22' 112 = eA12 and 121 = A21" This gives

- = - CA + E 2A2  + o(C 2 (3.10)
1 'l A11 + 11

A-1  1 - 22 2 2
2 p 2  22

- 1 = + A1  _ 2 1  -(A1 12A2121)  lip 1  1 2A1 2 A2A21

- - CAl + 2 (A - A 1 2 A2 1 ) + o( 2)

A~~ 2'2(A 1 2 A2
11 2 1)- 1 11 2 A2

1 =c 2 A21 AI2 +0 (c 2)

A211 2 1 (A,- 1 2 A 2 1) = EA 2 1 - c A2 2A21+ A2 1A 1I)+O(2

VN* . . . " . . ." ' - -
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Using (2.6) and (3.10), the expression for F in

(3.6) is simplified as

F = (trS+trV)-l{tr(l 1-I)HSH' + tr( 2  - I2)H 2 VH'} (3.11)

= (trS + trV)-l{-c(tr a1IHISIIH' + tr A2 2H2 (S22 + V)H

42

+2 tr A1 2H2 S2 1 H'I + c2 (tr(Al -

1 A1 2 21H1 1 ~

+ tr A 2H2 (S2 2 + V)H' + tr A 21 A 1 2H2 S22 H +

+ 2 tr(A 2 2 A2 1 + A 2 1 AI)HSI2H'] + o (E 2 )

2 2

where the last term Oy(c 2 ) in (3.11) is uniformly o(e ) in y.

We now use the following facts (Kariya (1985)):

(a) f tr(AQBQ') v(dQ) = tr A tr B

o(p) P

2 (dQ) = 3(tr A2 )(tr B2
O(P) 

P(P + 1)

; ;

. ..
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(c) f (tr AQBQ-)3(1+0 trAQBQ-)--3v (dQ)=o(trA2 )-trB3

0(P)

(d) J tr(AQ) v(dQ) = 0
0(P)

for 0 < 8 < 1, y > 0 and A close to the null matrix in (c). The

terms o(tr A2 ) in (c) above is uniform in the elements of B.

We are now in a position to evaluate the R.H.S. of

(3.6). Expanding (I+F)-np /2 as

(1+F)- np/2 = I-yF+y(y+l) F 2/2-y(y+l)(y+2)F 3 (1+6F)-y-3/6 (3.12)

where 0 < 8 < 1 and y = np/2, we compute, using (3.11) and

the above facts,

f F v(dHl) v(dH 2 ) = (3.13)0(P1) x 0(p2)

(tr All)(tr Sll)/pl + (tr A22 )(tr(S 22 + V)/p 2)
- £ tr S + tr V

2A 2 rS 2P) +tr 21 1 2 )(trS 22)
S-1221)1 2+(trA2 )(tr

+ E2 pl P2 P2tr S + tr V

is r . .. .,( n,,,.,,.. ,n r , - m 2
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+ OC 2);

3(trA 2 trS 2

f F v(dHl)v(dH2 ) (trS+trV)- Ell +  11 + (3.14)
O(P1 xO(p2 ) 1l 

)

2 +)2
3(tr A22 ) tr(S 22 + V)

p2(P2 + 1)

4 f (tr A1 2H2S2 1H1 )2 v(dHl) v(dH 2 ) +
0(Pl) x O(p2 )

tr(S 22 + V)2

+ 2(tr All)(tr Sll)(tr A2 2 ) l2 +

It therefore follows that for quite general local

alternatives of the type = Ip + EA considered above, the

dPT

ratio is expressed as
dPH 0

T trS tr(S 2 2+V)
dP H -(n-l) -1 (trA 11 (- )+(trA 2 2 )

_ IT 1 '122' [I+ tr S + tr V
dPH 0

(3.15)

+ O(E]

VV%~ %~Y ,
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*This means that the LBI test for a specific A can be obtained.

(trS 11 ) tr(S 2 2+V)(trA +{trA(trl Pl A22) P2

This test rejects H0 when tr S + tr V

large. However, because of its dependence on A, this result

is not very useful.

On the other hand, if we consider a subclass of

alternatives of the form = + cA with tr 11 tr A22
Pl P2

then the coefficient of e in R.H.S. of (3.15) becomes

a constant and it becomes necessary to look into the

coefficient of £2. This is readily available from the

previous calculations and yields the following expression of

dP THI
the ratio 1

dPd
H0

dPT
H l'2 A' tr

*~~~-/ (.T=IIi.i 1 + ye 11 (3.16)
dP T -121P

H 0

trA2 aA(rA2 t
trA 1 1- 12 21 (tr S11 ) (tr A2 2 )tr(S 2 2 + V)

Pl P2

2 2
tr S2 2  -l 3(tr All)(tr S 11)

+ tr(A 2 1A1 2 ) )(trS + trY) + ( pl + )

• oP2
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3(trA 2 )(tr(S22 +V)

+ p2 (P2 + i) +2(trA 1 1 )(trS 1 1 )(trA 2 2 )(tr(S 2 2 +V))/P lP2

+ 4 f (tr A1 2H2 S21 Hl) 
2 v(dHI)(dH2))(trS+trV)- 2} + o(c2 )

O(Pl)xO(P 2)

The locally best invariant test statistic against such

specific local alternatives thus turns out to be the co-

efficient of e2 in the R.H.S. of (3.16). Unfortunately

this again depends heavily on the fixed A. In the case when

A1 2 = 0, the coefficient U(say) of e2 simplifies to

(trA )(trS ) (trA 2)(tr(S +V))U = { 1 + 22 22 }(trS+trV) - I  (3.17)

t A11 )(tr S 1) 3(tr A 2)(tr(S22 + V) 2 )
+ 111+ 222+

pl(Pl + 1) p2 (P2 + 1)

-2+ 2(trA 1 1 )(trA 2 2 )(trSll)(tr(S 2 2 + V))/plP 2}(trS + trV)-

This still depends on All and A2 2. If we restrict All and

A2 2 to satisfy

tr A1 tr A22 tr A2  tr A2
tr A1  trA 22  1 ___22

pl P2  Pl P2  
(3.18)

.0

a "..%*a. .*• - *
r . ... ,' + ,- . ."e..- .. ,.... ' • " +>,'. " .a .- +'' -.
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and tr A2= K tr A 2 = K2 (tr All)(trA2 2 )

for KI , K2 > 0 known, then LBI test statistic turns out to

be

3(trS 1 ) tr((S 2 2 +V)
2 ) 2(trS1l)tr(S2 2+V)

V 1 (P 1+) + 3 p2(p2  + 1) p1 }2 2 (3.19)p J~ p l l ) K 1 P 2 P 2 +P l P 2 K 2

(trS + trV)
2

The preceding analysis can be summarized as follows.

Theorem 3.1: For testing H0 .  a 1 vs H

+ 0 O > 0 small, in the model (2.1)-(2.2),

the test which rejects H0 for large V is LBI provided All

and A2 2 satisfy (3.18).

Remark 3.2: The testing problem mentioned in Theorem 3.1

can be regarded as testing sphericity against independence.

Remark 3.3: It is interesting to observe that while the

absence of V in (3.6) makes the corresponding analysis

smooth and leads to an LBI test against very general

local alternatives, its presence changes the problem

such drastically. The test statistic V is not all

J. J,
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that desirable because it fails to use the covariance

component S1 2 .S.
Remark 3.4: A reasonable test for this problem would beU)

to reject H for large values of W (tr 2 where

0 (tr T)
T = [Sll S1 2 . This is a generalization of the

wS21 S22V

locally optimum test statistic tr when V = 0 to the case
(tr S) 2

when V prevails. It is possible that for some specific A

with A1 2 # 0, W may turn out to be the LBI test statistic.

Remark 3.5: It is not difficult to evaluate the integral

(tr AI2 H2 S2 1 H')2 v(dH,)v(dH2 ) which appears in
0(Pl ) x O(P2) 1 112

(3.14) and (3.16). Following as in Kariya (1978), and Eaton

and Kariya (1983), it can be shown that

4 - (tr A 2 H2 S2 1 H-)2 v(dHl)v(dH 2 )=c(trAl2 A21 )(trS 21 Sl2 )
0(pl) x 0(P2

)

where

p1 c (tr Hall) 2(dHl)v(dH3 ).
O(p1 ) x 0(pl)
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